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High-orderC1 finite-element interpolating schemes—Part I:
Semi-Lagrangian linear advection
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SUMMARY

This paper is devoted to the development of accurate high-order interpolating schemes for semi-Lagrangian
advection. The characteristic-Galerkin formulation is obtained by using a semi-Lagrangian temporal
discretization of the total derivative. The semi-Lagrangian method requires high-order interpolators for
accuracy. A class of C1 finite-element interpolating schemes is developed and two semi-Lagrangian
methods are considered by tracking the feet of the characteristic lines either from the interpolation or
from the integration nodes. Numerical stability and analytical results quantifying the amount of artificial
viscosity induced by the two methods are presented in the case of the one-dimensional linear advection
equation, based on the modified equation approach. Results of test problems to simulate the linear advection
of a cosine hill illustrate the performance of the proposed approach. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The advection equation has been for many years an active area of research in the computational
fluid dynamics community. This type of equation is not simple to solve numerically due to the fact
that the transport process takes place along the characteristic lines and that the information comes
from the past [1–4]. The transport equation has been solved employing mainly three families of
numerical schemes: the Eulerian, the Lagrangian and the Eulerian–Lagrangian methods [5–11].
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A version of the Eulerian–Lagrangian scheme also known as the semi-Lagrangian method is used
in the present study.

The semi-Lagrangian advection scheme combines the gridpoint nature of Eulerian schemes
(regular resolution) with the enhanced stability of Lagrangian methods, and the treatment of
time and space are intimately linked [12]. The semi-Lagrangian scheme usually offers the possi-
bility of using time steps that exceed those permitted by the Courant–Friedrichs–Lewy (CFL)
stability criterion for Eulerian discretizations of advection-dominated flows. The CFL condition
ensures that the domain of dependence of the analytical solution of a hyperbolic partial differ-
ential equation (PDE) is contained within the domain of dependence of the numerical solution.
For advection-dominated flows, a time discretization in a semi-Lagrangian framework can circum-
vent the CFL bound associated with Eulerian advection. The semi-Lagrangian advection scheme
shifts the numerical domain of dependence, in the form of a finite-difference stencil, to the
grid cell containing the upstream departure point of the fluid particle trajectory, thus permitting
Courant numbers that can exceed unity. They can be considered to be equivalent to Eulerian
methods that are shifted upwind by the advecting velocity. The possibility of stable integration with
Courant numbers exceeding unity is not the only virtue of a semi-Lagrangian advection scheme.
It also gives good phase speeds with little numerical dispersion when compared with Eulerian
schemes.

The accuracy of a semi-Lagrangian advection scheme depends on the choice of an interpo-
lation method. Two semi-Lagrangian schemes are presented in this study. In the first case, one
uses the characteristic stemming backward from the interpolation nodes, called the interpolation
semi-Lagrangian finite-elements method (ISLFEM), while in the second case, one uses those stem-
ming from the quadrature nodes, named here quadrature semi-Lagrangian finite-element method
(QSLFEM). The latter has already been used in [2, 8, 11].

The purpose of this paper is to develop an accurate cost-effective high-order interpolation scheme
to solve advection problems. Various interpolator schemes have been used in the past in regular
domains; these include linear, quadratic, cubic and quintic Lagrange polynomials, bicubic splines
and compact and non-compact methods [1, 11]. The bicubic spline interpolation, which gives
fourth-order spatial truncation errors with little damping, has been found to be a good compromise
between accuracy and computational cost for short-term simulations in the context of atmospheric
models [13–16]. In [17, 18] the kriging method has been used as a proof-of-concept test and
was found to yield equally high-order accuracy results on regular grids and unstructured meshes.
However, to our knowledge, there is a lack of interpolation error analysis for the kriging scheme
in the literature.

In this paper, we take a first step toward the development of a class of accurate C1-interpolating
methods, based on finite-element schemes that are used to solve fourth-order problems [19]. Such
an approach is expected to lead to accurate and flexible interpolating schemes that could be easily
implemented in two and three dimensions.

The paper is divided as follows. The characteristic-Galerkin method for the transport equa-
tion and the semi-Lagrangian schemes are described in Sections 2 and 3, respectively. In Section
4 a stability and accuracy analysis of the semi-Lagrangian methods is performed by using the
modified equation approach of Warming and Hyett [20]. Two classes of C1-interpolating methods
are then introduced in Section 5: the Hsieh–Clough–Tocher and Bell families. Results of linear
advection experiments to simulate the propagation of a cosine hill employing the proposed two
methods and their computational cost are discussed in Section 6. Conclusions are drawn in
Section 7.
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2. THE CHARACTERISTIC-GALERKIN METHOD FOR LINEAR TRANSPORT EQUATION

Let � be a regular open-bounded domain of Rm with Lipschitz boundary ��. Functional spaces
are defined using standard Sobolev space notations. In particular, H1(�) is the space of functions
in the square integrable space L2(�), whose first derivatives belong to L2(�).

For a vector field A(x, t) defined on �̄ (the closure set of �), we name inward boundary the
subsect �−

A(x,t) of �� defined as

�−
A(x,t) ={x∈�� |A(x, t) ·n<0}

where x is the position vector, t is the time variable and n is the unit outward normal with respect
to ��.

In the following the divergence and gradient operators are defined with respect to the space
variables only. The vector field A is assumed to be divergence free and to belong to L∞(�×[0,T ]).
Let T be a nonzero positive real number. Given g defined on �� and f , U0 defined on �, we
consider the following advection problem: find U (x, t) in H1(�) such that

�U
�t

(x, t)+A(x, t) ·∇U (x, t)= f (x, t) in �×]0,T [ (1)

U (x,0)=U0 in � (2)

U (x, t)=g(x, t) ∀x∈�−
A(x,t) ∀t ∈]0,T [ (3)

The Lagrangian coordinate X=X(x, t;�) provides the position at time � of a particule that has
been driven by the field A(x, t) and that occupied the position x at the time t . It is the solution of
the Cauchy problem:

dX
d�

(x, t;�)=A(X(x, t;�),�) (4)

X(x, t; t)=x (5)

with 0<�<t . When A is a velocity field, X is the characteristic path or trajectory.
By using (4) and (5), Equation (1) is rewritten as

DU

Dt
(x, t)= �U

��
(X(x, t;�),�)|�=t = f (X(x, t;�),�)|�=t = f (x, t) (6)

For a given time step �t= tn+1− tn , n=0,1, . . . ,N , where N is a positive integer, tn =n�t and
tN =T =N�t , the left-hand side (LHS) of (6) is discretized by employing the backward Euler
scheme and this leads to

1

�t
(U (x, tn+1)−U (X(x, tn+1; tn), tn))≈

(
�U
�t

+A ·∇U

)
(x,tn+1)

(7)

by taking into account that X(x, tn+1; tn+1)=x.
Let us denote an approximation of X(x, tn+1; tn) by Xn . One can typically choose the forward

Euler scheme to discretize (4) and obtain

Xn(x)=x−�tAn(x) (8)

when An(x)=A(x, tn). With this choice, Xn is a second-order approximation of X(x, tn+1; tn).
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Equation (1) is then discretized using the characteristic method and this leads to

1

�t
(Un+1(x)−Un(Xn))= f (x, tn+1) in � (9)

where Un is the numerical approximation in time of U (x, tn). In order to discretize (9) in space,
we denote the subspace of functions in H1(�), by H1

�0
(�), which vanish on a subset �0 of �� of

positive measure. Let Lh be a triangulation of � and let Pk,�0 be the finite-element subspace

Pk,�0 ={p∈C0(�̄)|p|�0 =0, p|K ∈ Pk(K ),∀K ∈Lh}

where Pk(K ) denotes the space of polynomials of degree k on K .
The weak formulation of (9) requires that we search for Uh belonging to Pk,�0 such that

∫
�
Un+1
h (x)�h dx=

∫
�
Un
h (Xn)�h dx+�t

∫
�
f (x, tn+1)�h dx ∀�h ∈ Pk,�0 (10)

where the test function �h also belongs to Pk,�0 , and dx is the area element.
Scheme (10) is convergent in the L2-norm for k=1 with the resulting error O(h2+h2�t−1+�t),

as shown in [4, 9].

3. THE SEMI-LAGRANGIAN ADVECTION SCHEME

While most Eulerian methods treat time and space as though they were unrelated, with exceptions
such as the Lax–Wendroff scheme, characteristic methods interpret the time derivative at mesh
nodal locations as the rate of change along flow characteristics. Similarly, the semi-Lagrangian
advection is treated using time differences along particle trajectories. The essence of this hybrid
treatment is to simultaneously combine the advantages of regular meshes of Eulerian schemes
with the enhanced stability of Lagrangian methods. It usually permits the use of a longer time step
than that allowed by the CFL stability criterion. The semi-Lagrangian scheme for advection (see
[6, 7, 12, 21], e.g. in the context of environmental studies) is a generalization of (10) as shown in
[22], and we introduce the method by rewriting (1) in the form

DU

Dt
≡ �U

�t
+A ·∇U = f (x, t) (11)

A different set of particles is selected at each time step, and we require that at the end of the time
step, they arrive precisely at the mesh nodes. By tracking the particle back over that time step, we
can locate its position at the previous time step using an approximate trajectory. An interpolation
procedure is then used to determine the upstream value of an advected scalar field. A review of
semi-Lagrangian integration schemes can be found in [7].

A schematic for the two-time-level semi-Lagrangian scheme [21], that has O(� t2) accuracy,
is shown in Figure 1 in one dimension. The straight line (A′C) approximates the exact trajectory
(AC), both of which arrive at mesh point xm at time tn+�t . The particle is displaced by the
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Figure 1. A two-time-level semi-Lagrangian advection scheme. Approximate (A′C) and
exact (AC) trajectories arrive at node xm at time tn+�t . Here, am is the displacement

of the particle in the x-direction at time �t .

distance am during the time step �t . The total time derivative at mesh nodes is simply the rate of
change along flow characteristics. A semi-Lagrangian approximation to (11) and (4) is

1

�t
(Un+1(xm)−Un(xm−am))= f (12)

Equation (12) is nothing else than (9) where Xn is obtained from (8) with am =X(tn+1)−X(tn),
and A is now the velocity field. Thus, Un(Xn) in (9) is rewritten as Un(xm−am) in (12). The
right-hand side (RHS) in (12) can be evaluated at point (xm, tn+1) as in (9) but also at point
(xm−am/2, tn+�t/2), for example.

The weak formulation of (12) is then obtained from (10)∫
�
Un+1
h (xm)�h dx=

∫
�
Un
h (xm−am)�h dx+�t

∫
�
f �h dx ∀�h ∈ Pk,�0 (13)

The displacements am are determined by an approximate integration of the characteristic curves
defined in (4). Once am is calculated, the solution is obtained by evaluating Un

h at xm−am . The
calculation of am and Un

h (xm−am) is mainly obtained by using the two following approaches: the
ISLFEM and the QSLFEM methods that are now described.

3.1. The ISLFEM

The first approach is called the ISLFEM and it is used in [4, 8, 15–17, 21]. By tracking back a
particle located at an interpolation node (e.g. node C in Figure 1) over a time step, we can locate
its position at the previous time step using an approximate trajectory (e.g. (A′C) in Figure 1). In
order to compute the displacement am at each interpolation node, we need to solve (4)

am ≡X(tn+1)−X(tn)=
∫ tn+1

tn
A(X(s),s)ds (14)

Using the second-order Runge–Kutta method, we obtain the following fixed point problem:

am =�tA
(
xm− am

2
, tn+ �t

2

)
(15)
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The first-order approximation am =�tAn(x) in (8) is rarely used in practice due to the inherent
dissipation of first-order temporal schemes. In the following, we adopt the two-step algorithm
introduced in [14, 21] to have sufficiently accurate O(�t2) estimates of the trajectory:

(i) Extrapolate the velocity field at all interpolation nodes in (15) at time (tn+�t/2) by using
a two-time-level scheme

Ã
(
xm, tn+ �t

2

)
= 3

2
A(xm, tn)− 1

2
A(xm, tn−�t)+O(�t2) (16)

(ii) For each interpolation node, a first-order estimate a0m =�tA(xm, tn) is combined with a
number of iterations of

ak+1
m =�tÃ

(
xm− a

k
m

2
, tn+ �t

2

)
, k=1,2,3, . . . (17)

using interpolation when evaluating the RHS. A sufficient condition for convergence of (17)
is given in [23].

Finally, the ISLFEM procedure is completed by evaluating the first integral in the RHS of (13)
following the five-step process:

(i) Obtain Un(xm) at each node xm at time tn .
(ii) Compute the displacement am at each interpolation node at time tn by using (17).
(iii) Interpolate Un(xm) at the upstream positions (xm−am) using an interpolation scheme to

obtain Û n .
(iv) Expand Û n in terms of the basis functions as Û n =∑ j Û

n
j � j on each triangle K of Lh .

(v) Compute the first integral in the RHS of (13) on K using a numerical quadrature∫
K
Un
h (xm−am)�i dx=

∫
K

∑
j
Û n

j � j�i dx=∑
j

∑
q
Û n

j �q� j (�q)�i (�q) (18)

where �q and �q are the weights and nodes of the quadrature formula while i refers to the
node equation.

The ISLFEM method is conditionally stable and may suffer from numerical dissipation. In this
regard the interpolation step (iii) is crucial for the accuracy of the semi-Lagrangian scheme. The
stability analysis is performed in Section 4.

3.2. The QSLFEM

The second method consists in evaluating the first term in the RHS of (13) at the foot of the
characteristic lines by tracking back a particle located at an integration node. All the integrals
in (13) are computed by numerical integration. Such an approach is named QSLFEM and it is
conceptually different from the one used in Section 3.1. Indeed, rather than tracking back the
particules from the interpolation nodes, the QSLFEM tracks the particules backwards from the
quadrature (integration) nodes.

Since the particules are tracked backwards from the integration nodes, one needs to compute
the displacement am at each integration node and not at the interpolation nodes as in Section 3.1.
Hence, am is obtained as in (16) and (17) but xm is now an integration node.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1603–1627
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The QSLFEM procedure is completed by evaluating the first integral in the RHS of (13)
following the four-step process:

(i) Obtain Un(xm) at each node at time tn , as for step (i) of Section 3.1.
(ii) Compute the displacement am at each integration node at time tn by using (17).
(iii) Calculate Un

h at the upstream positions �q −am(�q) using an interpolation scheme. As in
Section 3.1 the present step is crucial for the accuracy of the method.

(iv) Compute the first integral in the RHS of (13) on triangle K using a numerical quadrature∫
K
Un
h (xm−am(xm))�i dx=∑

q
�qU

n
h (�q −am(�q))�i (�q) (19)

The QSLFEM is generally less diffusive than the ISLFEM as first pointed out in [2] and later in [11].
More quantitative comparisons are given in Section 6. A very attractive property of the QSLFEM
is its straightforward implementation in multiple dimensions. The QSLFEM may however lead to
instabilities [11] and this problem is now considered.

4. STABILITY ANALYSIS OF ISLFEM VERSUS QSLFEM METHODS

In this section, a stability analysis of the ISLFEM and QSLFEM methods based on the modified
PDE method introduced in [20] is presented. By using the amplification factor, Warming and
Hyett [20] have shown the connection between the so-called ‘heuristic’ stability theory and the
Von Newmann method. The essence of the modified equation approach is that, by examining a
truncated version of that equation, various properties of a finite-difference scheme such as the order
of accuracy and consistency can be deduced quite simply. Moreover, this method permits one to
gain an insight into the nature of both dissipative and dispersive errors. The technique involves
determining the actual PDE, which is solved numerically, aside from round-off errors by a given
initial-value problem solver (see [20]).

The modified equation is derived by using a two-steps procedure described as follows: firstly,
each term of a given finite-difference scheme is expanded using the Taylor series. A PDE is
obtained, which includes an infinite number of spatial and time derivatives. Secondly, high-order
time derivatives are eliminated by using algebraic operations [20].

For a given finite-difference scheme analogue of the PDE

�U
�t

+Jx (U )=0 (20)

where Jx (U ) represents a linear spatial differential operator; the procedure described above
provides the following equation:

�U
�t

+Jx (U )=∑
p

�(p)
�pU

�x p
(21)

where the coefficient �(p) stands for the coefficient of the pth spatial derivative.
For the remaining part of this section the modified equation approach is used to analyse the

stability, diffusion, dispersion properties and the order of accuracy of the ISLFEM and QSLFEM
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approaches. We limit our study to linear finite-element approximation of (1) in the context of a
one-dimensional advection problem with constant coefficients.

We assume that �=]0,1[ and we assume that f =0 and g=0. The mesh is uniform and we let
h be the mesh length parameter. The semi-Lagrangian discretization of (1) leads to

h

6
(Un+1

i−1 +4Un+1
i +Un+1

i+1 )=
∫

�
Un
h (x−�m(x))�i dx (22)

where Un
h is a linear approximation to Un and the LHS of (22) comes from to the mass matrix

using linear finite elements. For the sake of simplicity, we assumed that the transport velocity A is
a positive constant, the displacement field �m = A�t and the Courant number c= A�t/h is smaller
than one. For a uniform space–time grid, we denote s j = jh.

4.1. Interpolation methods

A stability analysis of IFESLM applied to (22) is performed in the following subsection. If the
RHS of (22) is computed using a linear approximation at the foot of the characteristics, we obtain

∫
�
Un(x−�m(x))�i dx =Un(si−1−A�t)

∫ 1

0
�i−1�i dx

+Un(si −A�t)
∫ 1

0
�2
i dx+Un(si+1−A�t)

∫ 1

0
�i+1�i dx

= h

6
(Un(si−1−A�t)+4Un(si −A�t)+Un(si+1−A�t)) (23)

Employing a linear approximation for Un leads to Un(si −A�t)=(1−c)Un
i +cUn

i−1, since
c<1, and combining (22) and (23) we obtain

Un+1
i−1 +4Un+1

i +Un+1
i+1 =(1−c)(Un

i−1+4Un
i +Un

i+1)+c(Un
i−2+4Un

i−1+Un
i ) (24)

The application of the modified equation approach to (24) is now presented. Let � satisfy

��

�t
+A

��

�x
=0 (25)

then the truncation error �h(�) associated with (24) is expressed as

�t�h(�) = �(si−1, t
n+1)+4�(si , t

n+1)+�(si+1, t
n+1)

−(1−c)(�(si−1, t
n)+4�(si , t

n)+�(si+1, t
n))

−c(�(si−2, t
n)+4�(si−1, t

n)+�(si , t
n)) (26)
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Owing to a Taylor expansion of �h(�) at the vicinity of the point (si , tn), we have

�t�h(�) = 6�t
��

�t
+6c

��
�x

+3�t2
�2�
�t2

+h2�t
�3�

�x2�t
+�t3

�3�
�t3

+ 1

2
h2�t2

�4�
�x2�t2

+1

4
�t4

�4�
�t4

−3ch2
�2�
�x2

− 3

4
ch4

�4�
�x4

+2ch3
�3�
�x3

+O(h5)+O(�t5) (27)

Higher-order derivatives in time can be expressed in terms of spatial derivatives of the same order
by using (25)

�m�

�tm
=(−1)m Am �m�

�xm
(28)

where m is a positive integer. This leads to

�h(�)=3(−1+c)h
�2�
�x2

+(1−c2)h2
�3�
�x3

+O(h3) (29)

The scheme is thus of order one in space. The modified equation then reads

��

�t
+A

��

�x
+hD(�)=0 (30)

where the operator D is defined below.
By using (28), Equation (27) is rewritten as

�t�h(�) = 6�t

(
��

�t
+A

��

�x

)
+3�t2

�2�
�t2

−3ch2
�2�
�x2

+�t3
�3�
�t3

+h2�t
�3�

�x2�t

+1

2
h2�t2

�4�
�x2�t2

+ 1

4
�t4

�4�
�t4

− 3

4
ch4

�4�
�x4

+2ch3
�3�
�x3

+O(h5)+O(�t5) (31)

Thanks to (30), we finally obtain

�h(�)=−6hD(�)+3A(c−1)
�2�
�x2

h+O(h2) (32)

If �h(�)=O(h2) then

D(�)= 1

2
(c−1)A

�2�
�x2

and the PDE associated with (24) reads

�U
�t

+A
�U
�x

+h(c−1)
A

2

�2U
�x2

=0 (33)

As c<1, the diffusion coefficient (c−1)A/2 is negative and (24) is stable. We also deduce that
the scheme will be diffusive. This undesired property is numerically illustrated in Section 6. It is
then crucial to develop accurate schemes (step (iii) of Section 3.1). In the sequel, we show that
the use of the QFESLM leads to less diffusive results.
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4.2. Quadrature methods

The method consisting in tracking the characteristic backward from an integration node has been
studied by Oliveira and Baptista [11] using the Fourier analyis in the case of the linear transport
equation with constant coefficients. A different approach is proposed here by employing the
modified equation approach mentioned earlier.

4.2.1. Exact integration. For the one-dimensional advection problem (1), the RHS of (22) can be
computed exactly when linear finite elements are used. Since c<1, we obtain∫

�
Un
h (x−�m(x))�i dx =

d∑
j=1

Un
j

∫ 1

0
� j (x−�m(x))�i dx

=Un
i−2

∫ 1

0
�i−2(x−�m(x))�i dx+Un

i−1

∫ 1

0
�i−1(x−�m(x))�i dx

+Un
i

∫ 1

0
�i (x−�m(x))�i dx+Un

i+1

∫ 1

0
�i+1(x−�m(x))�i dx (34)

where d is the dimension of P1,�0 . The integrals in the RHS of (34) are computed exactly (we
have one-dimensional linear basis functions) and (34) leads to∫ 1

0
Un(x−A�t)�i dx = hc3

6
Un
i−2+ h

6
(1+3c+3c2−3c3)Un

i−1

+h

6
(4+3c3−6c2)Un

i + h(1−c)3

6
Un
i+1 (35)

Then by combining (22) and (35) we obtain

Un+1
i−1 +4Un+1

i +Un+
i+1 =Un

i−1+4Un
i +Un

i+1+3c(Un
i−1−Un

i+1)

+3c2(Un
i−1−2Un

i +Un
i+1)+c3(Un

i−2−3Un
i−1+3Un

i −Un
i+1) (36)

By using the modified equation approach, we obtain the PDE associated with (36)

�U
�t

+A
�U
�x

+h3(c−1)2
cA

24

�4U
�x4

=0 (37)

Owing to the term h3(c−1)2(cA/24)�4U/�x4, the scheme (36) is not dispersive and only weakly
dissipative for large wave numbers. It thus seems reasonable to look for schemes based on precise
integration of the RHS of (34). This is investigated in the sequel.

4.2.2. Numerical integration. The Gauss–Legendre and Gauss–Lobatto quadrature formulas are
employed to compute the RHS of (34), and for a fixed integer i and integration point �∈[−1,1],
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we let

�− = h�+xi−1+xi
2

, �+ = h�+xi +xi+1

2
(38)

We define I c− ={k |�k ∈[2c−3,2c−1]} and I c+ ={k |�k ∈]2c−1,2c+1]}, and we let nG and wk
be the number of integration points and weights, respectively. By using a Gaussian quadrature
formula to evaluate the RHS of (22), we obtain

h

6
(Un+1

i−1 +4Un+1
i +Un+1

i+1 ) = h

4

nG∑
k=1

wk((1+�k)U
n(�−

k −A�t))

+h

4

nG∑
k=1

wk((1−�k)U
n(�+

k −A�t)) (39)

As in the previous subsection, we consider one-dimensional linear basis functions in (34).
We set

B−2 = ∑
k∈I c−

wk

(
c− 1

2
−�k+�kc− 1

2
�2k

)

B−1 = ∑
k∈I c−

wk(1+2�k−2�kc+�2k)+
∑
k∈I c+

wk

(
c+ 1

2
+�kc− 1

2
�2k

)

B0 = ∑
k∈I c−

wk

(
−c+ 3

2
−�k+�kc− 1

2
�2k

)
+ ∑

k∈I c+
wk(1−2�kc+�2k)

B+1 = ∑
k∈I c+

wk

(
−c+ 1

2
+�kc− 1

2
�2k

)
(40)

After long and tedious algebra, we obtain

1
6 (U

n+1
i−1 +4Un+1

i +Un+1
i+1 ) = 1

2 (w1+wnG)(cUn
i−1+(1−c)Un

i )

+ 1
4 B−2U

n
i−2+ 1

4 B−1U
n
i−1+ 1

4 B0U
n
i + 1

4 B+1U
n
i+1 (41)

The modified PDE is now used to perform a stability analysis of (41), which leads to

�U
�t

+A
�U
�x

+h
A

c

(
1

6
+ c2

2
− c

4
(w1+wnG)+ 1

8
A2

)
�2U
�x2

=0 (42)

where A2 is defined as

A2=− ∑
k∈I c+

(1+2c�k−�2k)wk+ ∑
k∈I c−

(1−4c−2�kc+�2k+2�k)wk
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The stability analysis of (41) depends on the coefficient of the last term in the LHS of (42)

SQ≡ A

c

(
1

6
+ c2

2
− c

4
(w1+wnG)

)
− A

8c

∑
k∈I c+

(1+2c�k−�2k)wk

+ A

8c

∑
k∈I c−

(1−4c−2�kc+�2k+2�k)wk (43)

In (43), SQ depends on the employed Gauss–Legendre or Gauss–Lobatto quadrature formulas,
which are exact for polynomials of order 2n+1 and 2n−3, respectively, when n integration points
are considered. Therefore, we compare Gauss–Legendre and Gauss–Lobatto formulas with n and
n+1 points, respectively, in the following.

SQ is now used to examine the influence of the numerical integration procedure on the stability
properties of (41). The stability and instability regions are shown in Figure 2 and they correspond
to SQ<0 and SQ>0, respectively, for the two Gaussian formulas and n=2,3,4,9. We observe
that the area of the instability regions decreases as the number of quadrature points increase. The
Gausss–Lobatto quadrature with n points leads to n−2 instability subregions while the Gausss–
Legendre quadrature with n points leads to n instability subregions. This is in accordance with the
result obtained in [11], where an amplification factor analysis is performed and is favourable to
the use of the Gausss–Lobatto quadrature. This is to be expected since that quadrature is backward
oriented.

The modified equation approach thus provides a theoretical framework to analyse the stability,
accuracy and order of a given scheme, and this is an advantage over the amplification method,
which is only restricted to numerical experiments as done in [11]. We now introduce the C1

interpolating schemes that are used at steps (iii) and (iv) of Sections 3.1 and 3.2, respectively.

5. THE C1-INTERPOLATING SCHEME

The accuracy of the first integral in the RHS of (13), and hence the advection term, strongly
depends on the choice of an interpolation procedure for the semi-Lagrangian advection scheme
[7, 17]. This has been mentioned previously at steps (iii) and (iv) for the ISLFEM and QSLFEM
methods, respectively, in Section 3. McCalpin [24] and Purser and Leslie [13] have shown the
importance of using high-order interpolating schemes. The bicubic spline interpolation has been
found to be a good compromise between accuracy and computational cost for short-term simula-
tions in the context of atmospheric models [13–15]. However, the method is restricted to regular
meshes.

The kriging interpolating scheme has been used in [17] and yields equally favourable results
on regular and unstructured meshes, showing its excellent flexibility. In [17] the computational
cost of kriging was found significant and further elucidation of this question is needed. Further,
to our knowledge, there is a lack of interpolation error analysis for the kriging scheme in the
literature.

In order to try to construct an interpolating scheme on unstructured meshes at a reasonable
computational cost, few C1-interpolating schemes are introduced as follows. These are the reduced
Argyris finite element, namely the Bell finite element [19, 25], and the family of Clough and
Tocher finite elements, complete and reduced [19, 26, 27].
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Figure 2. Diffusion coefficient as a function of the CLF number for Gauss–Legendre
and Gauss–Lobatto quadratures.
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Figure 3. Set of degrees of freedom for the HCT-C (left) and HCT-R (right) finite elements.

5.1. The C1 quintic bell finite element

We let K a triangle of Lh and �K be the set of degree of freedom on K . In the following, the
variables � and 	 are associated with a reference element K̂ , while x and y refer to the current
element and p is a function defined on the element K .

If ai , 1�i�3, are the vertices of triangle K̂ , we have

�K̂ =
{
p(ai),

�p
��

(ai),
�p
�	

(ai),
�2 p

�2�
(ai),

�2 p
���	

(ai),
�2 p

�2	
(ai),1�i�3

}

and the local interpolation operator �Bell
K̂

is defined for all p∈C1(
¯̂K ) by

�Bell
K̂

p=
18∑
i=1

p(ai )�i

where the basis functions �i of the Bell finite element are detailed in [25]. At each vertex ai , the
nodal value p(ai), the first and second derivatives are known.

5.2. The C1 cubic HCT element

The HCT elements are also called composite finite elements and they are defined as follows.
Triangle K with vertices ai , i=1,2,3, is subdivided into three subtriangles Ki , i=1,2,3, as
shown in Figure 3 where a is an arbitrary point. Let mi be the unit exterior normal of the edge
opposite to ai . We denote by bi , i=1,2,3, the mid-side node of the face that does not contain ai ,
and ci , i=1,2,3, the orthogonal projection of ai on the face containing bi , i=1,2,3. Further, in
the following the indices are in the set {1,2,3} (modulo 3).

The derivative of p in the direction aiai+2 is defined as

Dp(ai) ·aiai+2=(xi+2−xi )
�p
�x

(ai)+(yi+2− yi )
�p
�y

(ai) (44)

where (xi , yi ) are the Cartesian coordinates of ai, i=1,2,3. The set of degrees of freedom for the
complete HCT element (HCT-C) (shown in Figure 3) is

�K ={p(ai),Dp(ai) ·aiai+2,Dp(ai) ·aiai+1,Dp(bi) ·ciai,1�i�3}
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For all p in C1(K̄ ) and i=1,2,3, the local interpolation operator �HCT-C
K is defined as

�HCT-C
Ki

p=
i+2∑
j=i

p(aj)�0
i, j +Dp(aj) ·ajaj+2�

1
i, j, j+2+Dp(aj) ·ajaj+1�

1
i, j, j+1+Dp(bj) ·cjaj�⊥

i, j

At each vertex ai, the degrees of freedom are nodal values p(ai) and the directional derivatives
Dp(ai) ·aiaj. The basis functions of the HCT-C element, �0,�1,�⊥ are given in the Appendix.
Their implementation is detailed in [27].

We will also use the reduced HCT element (HCT-R) (shown in Figure 3), which is derived
from the complete one by removing normal derivatives. The set of the degrees of freedom for the
HCT-R element is thus

�K ={p(ai),Dp(ai) ·aiai+2,Dp(ai) ·aiai+1,1�i�3}
and the local interpolation operator �HCT-R

K is defined as

�HCT-R
Ki

p=
i+2∑
j=i

p(ai)�̃0
i, j +Dp(ai) ·ajaj+2�̃

1
i, j, j+2+Dp(ai) ·ajaj+1�̃

1
i, j, j+1 (45)

The basis functions of the HCT-R element, �̃0, �̃1 are given in the Appendix and their implemen-
tation is detailed in [27]. Interpolation error estimates and C1 continuity are obtained in [19] for
the HCT-C and HCT-R elements.

5.3. Explicit construction of C1-interpolating scheme

Finite elements of class C1 require the computation of the derivatives. In order to avoid such
computation, we let Hh be a C1 finite-element space and we denote by 
 the L2-projector on Hh
defined in the following way. Given Un in L2, 
(Un) is the solution of the variational problem∫

�

(Un)�h dx≡

∫
�
Un�h dx ∀�h ∈Hh (46)

In the sequel, the space Hh is either the finite-element space associated with the Bell or HCT
(reduced or complete) elements. To describe a given C1-interpolating scheme, we first solve (46)
in order to determine the values of the degrees of freedom and then use the local interpolation
operator. The interpolation procedure is cost effective. Comparison of the computational cost for
the above interpolating schemes is done in the next section.

6. NUMERICAL RESULTS

In this section we perform advection experiments and solve (11) with f =0. The velocity field A
is assumed constant in time and it is associated with a solid body rotation such that

A=�(−y, x) (47)
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1618 G. DJOUMNA, R. PIERRE AND D. Y. LE ROUX

Figure 4. The regular 34×34 mesh and the initial cosine hill.

with a angular frequency �=10−5 s−1. All experiments are performed on a regular 34×34 grid
centred at the point (19,9) with h=10km, and the initial cosine hill

U0(x, y)=

⎧⎪⎨
⎪⎩
50

(
1+cos

(

R

4h

))
, R�4h

0 otherwise

(48)

where R2= x2+ y2 is shown in Figure 4. The CFL number (c=max |V |�t/h) is set to one, where
max |V | is the maximum speed at the four corners of the domain. The values of h and � are
chosen so that a comparison can be made with the results obtained in [17]. One rotation of the
cosine hill corresponds to 142 times steps. The semi-Lagrangian scheme (12) is then rewritten as

U (xm, tn+�t)=U (xm−am, tn) (49)

The exact displacements am are calculated from (4) and (47)

am =
(
xm(1−cos(��t))− ym sin(��t)

ym(1−cos(��t))+xm sin(��t)

)
(50)

where xm =(xm, ym) is the position vector at the arrival point. In the following exact displace-
ments are used in order to focus on the loss of accuracy in evaluating upstream tracer values
(steps (iii) and (iv) of Sections 3.1 and 3.2, respectively) and not on the loss of accuracy of
the computed displacements. The evaluation of upstream tracer values is done via the linear,
quadratic and the Bell, HCT-C and HCT-R C1-interpolation schemes. The finite-element scheme
(with basis functions �h in Pk,�0 ) that is employed in (13) and used at steps (iv) and (iii) of
Sections 3.1 and 3.2 for the ISLFEM and QSLFEM, respectively, is named here P1- and P2-
Formulation for k=1,2, respectively. At initial time, the maximum and minimum values of the
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Quadratic reinterpolation Bell reinterpolation

Min = −6.54633, Max = 58.0026 Min = −4.51781, Max = 64.0179

HCT-C reinterpolation HCT-R interpolation

Min = −4.52319, Max = 64.0586 Min = −5.04558, Max = 62.8024

Figure 5. Shape of the cosine hill after 5 rotations using the ISLFEM method and the P2-Formulation.

cosine hill are Max=100 and Min=0, respectively. These values should be preserved during the
simulation.

For the ISLFEM method and the P1-Formulation, the cosine hill has lost more than 88% of its
amplitude for all interpolating schemes, after only one rotation. This is why the results are not
displayed here. For the P2-Formulation, the cosine hill is shown in Figure 5 after 5 rotations for
the quadratic, Bell, HCT-C and HCT-R interpolation schemes. The cosine hill loses more than
35% of its amplitude for all schemes and the dispersion ranges from 4.5 to 6.5%. These results
are comparable to those obtained in [17] using bicubic spline interpolation. If the simulation is
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Linear reinterpolation Bell reinterpolation

Min = 3.816, Max = 38.05 Min = −3.95, Max = 36.758

HCT-C reinterpolation HCT-R interpolation

Min = −5.556, Max = 36.68 Min = −5.49, Max = 36.56

Figure 6. Similar to Figure 5 but for the QSLFEM method and the P1-Formulation after 25 rotations.

performed for more than 5 rotations, numerical dispersion causes the cosine hill to reach the
boundary, generating boundary problems due to the open boundary. The experiment then loses its
validity.

For the QSLFEM and the P1-Formulation, the cosine hill is shown in Figure 6 after 25 rotations.
The hill has lost more than 60% of its amplitude for all schemes (linear, Bell, HCT-C and HCT-R)
and the numerical dispersion ranges from 4 to 5.5%. The significant level of damping is mainly
due to the use of the P1-Formulation. However, these results have much less damping than those
obtained using the ISLFEM. In Figure 7 the hill is shown after 50 rotations for the P2-Formulation.
The level of damping is only 4% for the finite element using quadratic approximation, 8% for
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Quadratic reinterpolation Bell reinterpolation

Min = −6.098, Max = 96.28 Min = −3.4329, Max = 87.952

HCT-C reinterpolation HCT-R interpolation

Min = −4.4206, Max = 92.432 Min = −3.771, Max = 92.249

Figure 7. Similar to Figure 6 but for P2-Formulation after 50 rotations.

the HCT schemes and 12% for the Bell one, and the dispersion is between 3.5 and 6% for
all schemes. The solutions are displayed in Figures 8 and 9 up to 25 and 50 rotations for the
P1- and P2-Formulations, respectively. These results compared well with those obtained in [17]
when employing the kriging interpolation scheme. Note that although the quadratic approxi-
mation for both the interpolation scheme and the P2-Formulation gives less damping than the
C1 interpolators in Figure 7, we can observe that it is somewhat more dispersive. This effect
is greatly amplified for nonlinear advection as it is demonstrated in [28], where the applica-
tion of C1 interpolation schemes are investigated for nonlinear semi-Lagrangian shallow-water
models.
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0 10 20 30 40 50
-7

-6

-5

-4

-3

-2

-1

0

Rotation number

M
in

im
um

 

 

HCT-R
HCT-C
Bell
P1

0 10 20 30 40 50
-7

-6

-5

-4

-3

-2

-1

0

Rotation number

M
in

im
um

 

 

HCT-R
HCT-C
Bell
P2

Figure 8. Minimum values of the cosine hill for the QSLFEM method and the P1- and P2-Formulations.
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Figure 9. Similar to Figure 8 but for the maximum of the cosine hill.

The root mean square (RMS) error between the numerical and initial cosine hills is defined as

RMS=
(∫

�
(U−U0)

2 dx
)1/2

/(∫
�
U 2
0 dx

)1/2

and it is shown in Figure 10 for the QSLFEM and the P1- and P2-Formulations. For the
P1-Formulation, the RMS is more than 60% for all schemes (linear, Bell, HCT-C and HCT-R)
after 25 rotations. For the P2-Formulation we obtain RMS=35% for the HCT-R scheme and the
RMS ranges from 13 to 15% for the quadratic, HCT-C and Bell schemes, respectively, after 50
rotations. The results for the ISLFEM are not presented here since after only 5 rotations the RMS
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Figure 10. Similar to Figure 8 but for the RMS error between the numerical and initial solutions.

is more than 40% for all schemes. The experiment loses its validity after 10 rotations due to the
interaction between the cosine hill and the open boundary.

In semi-Lagrangian schemes, mass conservation is an important issue [29, 30]. To address this
problem in the context of C1-interpolating schemes, we define the mass variation (MV) as

MV=
∫

�
U dx

/∫
�
U0 dx

and MV is shown in Figure 11 for the linear, quadratic, Bell, HCT-C and HCT-R interpolating
schemes. After 25 rotations and using the P1-Formulation the loss of mass is about 5% for all
schemes. When the P2-Formulation is employed, the HCT-R and Bell formulations have a loss
of, respectively, 3.5 and 6.5% after 50 rotations, while the quadratic finite element and the HCT-C
schemes exhibit a gain in mass of about 0.05 and 4%, respectively.

The computational cost is also an important issue. For the C1 interpolators presented in this
paper, the matrix appearing in the LHS of (46) is computed once so that the LU decomposition
is done only once and its cost becomes negligibly small once it is spread over a large number
of time steps. For a single field and a mesh of N nodes, there are hence O(N ) operations in
the calculation of 
(Un) in (46) per node. The C1 interpolators are clearly more expensive than
bicubic spline interpolation. Indeed, Bermejo [22] found that the computation of the upstream
value of a scalar field using bicubic spline interpolation requires 49 operations if it is implemented
efficiently. However, as shown in [28], the C1 interpolators also give good results on unstructured
meshes for nonlinear semi-Lagrangian advection while the bicubic spline interpolator is restricted
to regular meshes.

Finally, the above numerical tests have also been performed using numerically computed
displacements, and results similar to those presented here have been obtained.
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Figure 11. Similar to Figure 8 but for the mass variation MV.

7. CONCLUDING REMARKS

This paper addresses the combination of C1-interpolating schemes and characteristic backward
tracking from quadratures nodes, for semi-Lagrangian advection problems. A stability analysis
is performed based on the modified equation approach in the case of the one-dimensional linear
advection. It reveals that the QSLFEM induces less dissipation than the ISLFEM, but the former
may lead to unstable solutions. Those could, however, be avoided by increasing the number of
integration nodes. In the test problem, a cosine hill is advected in a rotational flow field. The
results obtained with the QSLFEM are found close to the kriging ones and are much more accurate
than those computed using bicubic spline interpolation. The computational cost of the method is
in O(N ) operations per node for a single field and a mesh of N nodes, and hence much more
expansive than bicubic spline interpolation. However, the latter is restricted to regular meshes while
the C1 interpolators presented here also give good results on unstructured meshes for nonlinear
semi-Lagrangian advection as shown in [28].

APPENDIX

We let r j = A j�, j =1,2, where the matrices r1 and r2 are the basis functions of subtriangle Ki
for the HCT-C and HCT-R elements, respectively, with

r1=(r0i,i ,r
0
i,i+1,r

0
i,i+2,r

1
i,i,i+2,r

1
i,i,i+1,r

1
i,i+1,i ,r

1
i,i+1,i+2,r

1
i,i+2,i+1,r

1
i,i+2,i ,r

⊥
i,i ,r

⊥
i,i+1,r

⊥
i,i+2)

r2=r0i,i ,r
0
i,i+1,r

0
i,i+2,r

1
i,i,i+2,r

1
i,i,i+1,r

1
i,i+1,i ,r

1
i,i+1,i+2,r

1
i,i+2,i+1,r

1
i,i+2,i )

�=(�3i ,�
3
i+1,�

3
i+2,�

2
i �i+2,�2i�i+1,�

2
i+1�i ,�

2
i+1�i+2,�

2
i+2�i+1,�

2
i+2�i ,�i�i+1�i+2)
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A1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 (ei+1−ei+2) 0 0 3

2 (3+ei+1)
3
2 (3−ei+2) 0 0 0 0 0

1
2 (1−2ei −ei+2) 1 0 − 3

2 (1−ei )
3
2 (ei +ei+2) 3 3 0 0 3(1−ei )

1
2 (1+2ei +ei+1) 0 1 − 3

2 (ei +ei+1) − 3
2 (1+ei ) 0 0 3 3 3(1+ei )

− 1
12 (1+ei+1) 0 0 1

4 (7+ei+1) − 1
2 0 0 0 0 0

− 1
12 (1−ei+2) 0 0 − 1

2
1
4 (7−ei+2) 0 0 0 0 0

1
12 (7+ei+2) 0 0 1

2 − 1
4 (5+ei+2) 1 0 0 0 −1

1
6 (4−ei ) 0 0 − 1

4 (3−ei ) − 1
4 (5−ei ) 0 1 0 0 1

2 (3−ei )

1
6 (4+ei ) 0 0 − 1

4 (5+ei ) − 1
4 (3+ei ) 0 0 1 0 1

2 (3+ei )

− 1
12 (7−ei+1) 0 0 1

4 (5−ei+1)
1
2 0 0 0 1 −1

4
3 0 0 −2 −2 0 0 0 0 4

− 2
3 0 0 2 0 0 0 0 0 0

− 2
3 0 0 0 2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 (ei+1−ei+2) 0 0 3

2 (3+ei+1)
3
2 (3−ei+1) 0 0 0 0 0

1
2 (1−2ei −ei+2) 1 0 − 3

2 (1−ei ) − 3
2 (ei +ei+2) 3 3 0 0 3(1−ei )

1
2 (1+2ei +ei+1) 0 1 − 3

2 (ei +ei+2) − 3
2 (1+ei ) 0 0 3 3 3(1+ei )

− 1
4 (1+ei+1) 0 0 1

4 (5+3ei+1)
1
2 0 0 0 0 0

− 1
4 (1−ei+2) 0 0 1

2
1
4 (5−3ei+2) 0 0 0 0 0

1
4 (1−ei+2) 0 0 − 1

2 − 1
4 (1−ei+2) 1 0 0 0 1

1
2ei 0 0 − 1

4 (1−3ei ) 1
4 (1+ei ) 0 1 0 0 1

2 (1−3ei )

1
2ei 0 0 1

4 (1−ei ) − 1
4 (1+ei ) 0 0 1 0 1

2 (1+3ei )

1
4 (1+ei+1) 0 0 − 1

4 (1−3ei+1)
1
2 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The parameters �i (resp. ei ), i=1,2,3, are the barycentric coordinates (resp. the excentricity
parameters) of triangle K . The excentricity parameters ei are defined as

ei =
l2i+2−l2i+1

l2i
with li =

√
(xi+2−xi+1)2+(yi+2− yi+1)2, i=1,2,3 (A1)
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